|
- <!DOCTYPE html>
- <html lang="en">
- <head>
- <meta charset="utf-8">
- <title>Categories Bartosz Milewski Youtube notes</title>
- <link rel="shortcut icon" href="favicon.png" type="image/x-icon">
- <link rel="copyright" href="http://www.gnu.org/copyleft/gpl.html"/>
- <link href="static/style.css" rel="stylesheet" type="text/css">
- </head>
-
- <body class="index">
-
- <nav class="prevnext">
- <a class="top" title="Index" href="../categories.html">↑</a>
- <a class="next" title="Next" href="younotes1/1.1-motivation-philosophy.html">→</a>
- </nav>
-
- <h1>Category Theory for programmers</h1>
-
- <div class="big20 bold margin-bottom2">Notes and screenshots from Bartosz Milewski's youtube videos</div>
-
- <div class="flex-wrap">
- <div>
- <div class="big20 bold">Part I</div>
- <ul class="naked">
- <li>
- <b><a href="younotes1/1.1-motivation-philosophy.html">I - 1.1: Motivation and Philosophy</a></b> - 46:46
- </li>
- <li>
- <b><a href="younotes1/1.2-what-is-a-category.html">I - 1.2: What is a category?</a></b> - 48:18
- </li>
- <li>
- <b><a href="younotes1/2.1-functions-epimorphisms.html">I - 2.1: Functions, epimorphisms</a></b> - 46:14
- </li>
- <li>
- <b><a href="younotes1/2.2-monomorphisms-simple-types.html">I - 2.2: Monomorphisms, simple types</a></b> - 24:34
- </li>
- <li>
- <b><a href="younotes1/3.1-examples-orders-monoids.html">I - 3.1: Examples of categories, orders, monoids</a></b> - 48:26
- </li>
- <li>
- <b><a href="younotes1/3.2-kleisli-category.html">I - 3.2: Kleisli category</a></b> - 41:58
- </li>
- <li>
- <b><a href="younotes1/4.1-terminal-and-initial-objects.html">I - 4.1: Terminal and initial objects</a></b> - 47:47
- </li>
- <li>
- <b><a href="younotes1/4.2-products.html">I - 4.2: Products</a></b> - 34:49
- </li>
- <li>
- <b><a href="younotes1/5.1-coproducts-sum-types.html">I - 5.1: Coproducts, sum types</a></b> - 36:47
- </li>
- <li>
- <b><a href="younotes1/5.2-algebraic-data-types.html">I - 5.2: Algebraic data types</a></b> - 33:14
- </li>
- <li>
- <b><a href="younotes1/6.1-functors.html">I - 6.1: Functors</a></b> - 54:10
- </li>
- <li>
- <b><a href="younotes1/6.2-functors-in-programming.html">I - 6.2: Functors in programming</a></b> - 51:36
- </li>
- <li>
- <b><a href="younotes1/7.1-functoriality-bifunctors.html">I - 7.1: Functoriality, bifunctors</a></b> - 56:32
- </li>
- <li>
- <b><a href="younotes1/7.2-monoidal-categories-functoriality-of-adts-profunctors.html">I - 7.2: Monoidal Categories, Functoriality of ADTs, Profunctors</a></b> - 49:15
- </li>
- <li>
-
- <div class="margin">--- end of current notes ---</div>
-
- <b><a href="younotes1/8.1-function-objects-exponentials.html">I - 8.1: Function objects, exponentials</a></b> - 45:25
- </li>
- <li>
- <b><a href="younotes1/8.2-type-algebra-curry-howard-lambek-isomorphism.html">I - 8.2: Type algebra, Curry-Howard-Lambek isomorphism</a></b> - 20:56
- </li>
- <li>
- <b><a href="younotes1/9.1-natural-transformations.html">I - 9.1: Natural transformations</a></b> - 51:27
- </li>
- <li>
- <b><a href="younotes1/9.2-bicategories.html">I - 9.2: bicategories</a></b> - 43:04
- </li>
- <li>
- <b><a href="younotes1/10.1-monads.html">I - 10.1: Monads</a></b> - 1:15:29
- </li>
- <li>
- <b><a href="younotes1/10.2-monoid-in-the-category-of-endofunctors.html">I - 10.2: Monoid in the category of endofunctors</a></b> - 32:57
- </li>
- </ul>
-
- <div class="big20 bold">Part II</div>
- <ul class="naked">
- <li><b><a href="younotes2/">II - 1.1: Declarative vs Imperative Approach</a></b> - 36:17</li>
- <li><b><a href="younotes2/">II - 1.2: Limits</a></b> - 48:26</li>
- <li><b><a href="younotes2/">II - 2.1: Limits, Higher order functors</a></b> - 42:36</li>
- <li><b><a href="younotes2/">II - 2.2: Limits, Naturality</a></b> - 28:53</li>
- <li><b><a href="younotes2/">II - 3.1: Examples of Limits and Colimits</a></b> - 41:48</li>
- <li><b><a href="younotes2/">II - 3.2: Free Monoids</a></b> - 36:54</li>
- <li><b><a href="younotes2/">II - 4.1: Representable Functors</a></b> - 50:19</li>
- <li><b><a href="younotes2/">II - 4.2: The Yoneda Lemma</a></b> - 36:11</li>
- <li><b><a href="younotes2/">II - 5.1: Yoneda Embedding</a></b> - 50:53</li>
- <li><b><a href="younotes2/">II - 5.2: Adjunctions</a></b> - 40:36</li>
- <li><b><a href="younotes2/">II - 6.1: Examples of Adjunctions</a></b> - 48:25</li>
- <li><b><a href="younotes2/">II - 6.2: Free-Forgetful Adjunction, Monads from Adjunctions</a></b> - 37:15</li>
- <li><b><a href="younotes2/">II - 7.1: Comonads</a></b> - 37:39</li>
- <li><b><a href="younotes2/">II - 7.2: Comonads Categorically and Examples</a></b> - 44:05</li>
- <li><b><a href="younotes2/">II - 8.1: F-Algebras, Lambek's lemma</a></b> - 51:39</li>
- <li><b><a href="younotes2/">II - 8.2: Catamorphisms and Anamorphisms</a></b> - 42:27</li>
- <li><b><a href="younotes2/">II - 9.1: Lenses</a></b> - 41:5911</li>
- <li><b><a href="younotes2/">II - 9.2: Lenses categorically</a></b> - 43:42</li>
- </ul>
-
- <div class="big20 bold">Part III</div>
- <ul class="naked">
- <li><b><a href="">III - 1.1: Overview part 1</a></b> - 26:59</li>
- <li><b><a href="">III - 1.2: Overview part 2</a></b> - 28:12</li>
- <li><b><a href="">III - 2.1: String Diagrams part 1</a></b> - 29:08</li>
- <li><b><a href="">III - 2.2: String Diagrams part 2</a></b> - 32:15</li>
- <li><b><a href="">III - 3.1: Adjunctions and monads</a></b> - 25:48</li>
- <li><b><a href="">III - 3.2: Monad Algebras</a></b> - 28:31</li>
- <li><b><a href="">III - 4.1: Monad algebras part 2</a></b> - 26:55</li>
- <li><b><a href="">III - 4.2: Monad algebras part 3</a></b> - 29:02</li>
- <li><b><a href="">III - 5.1: Eilenberg Moore and Lawvere</a></b> - 29:55</li>
- <li><b><a href="">III - 5.2: Lawvere Theories</a></b> - 29:26</li>
- <li><b><a href="">III - 6.1: Profunctors</a></b> - 29:14</li>
- <li><b><a href="">III - 6.2: Ends</a></b> - 34:26</li>
- <li><b><a href="">III - 7.1: Natural transformations as ends</a></b> - 33:36</li>
- <li><b><a href="">III - 7.2: Coends</a></b> - 43:15</li>
- </ul>
-
- </div>
-
-
- <div class="margin-left">
- <div class="border-left">
- <div class="big20 bold center">Original resources
- <br>from Bartosz Milewski</div>
-
- <ul class="naked">
- <li>
- <a href="https://www.youtube.com/playlist?list=PLbgaMIhjbmEnaH_LTkxLI7FMa2HsnawM_">Youtube playlist - Part I</a> (20 videos, ~ 15h).
- </li>
- <li>
- <a href="https://www.youtube.com/playlist?list=PLbgaMIhjbmElia1eCEZNvsVscFef9m0dm">Youtube playlist - Part II</a> (18 videos, ~ 10h30).
- </li>
- <li>
- <a href="https://www.youtube.com/playlist?list=PLbgaMIhjbmEn64WVX4B08B4h2rOtueWIL">Youtube playlist - Part III</a> (18 videos, ~ 7h).
- </li>
- <hr/>
- <li>
- Blog : <a href="https://bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface/">Category Theory for Programmers : the preface</a>
- </li>
- <li>
- <a href="https://github.com/hmemcpy/milewski-ctfp-pdf">PDF book</a> (~ 500 pages)
- </li>
- <li>
- <a href="https://github.com/hmemcpy/milewski-ctfp-pdf.git">Tex source of the pdf book</a>
- </li>
- <li>
- <a href="http://www.lulu.com/shop/bartosz-milewski/category-theory-for-programmers/hardcover/product-23389988.html">Paper book at lulu.com</a> (452 pages)
- </li>
-
- </ul>
- </div>
- </div>
-
- </div><!-- end class="flex-wrap" -->
-
- <h2>About these notes</h2>
- <div class="dejavu">
- Started in 2018 by Thierry Graff.
- <br>These notes helped me to follow the first chapters of the course, but do not bring new information - see Milewski's blog and book for complementary resources.
- <br>There are notes until part I, chapter 7.2 ; for the moment, I stopped watching the videos (because I bought the book).
-
- <br>You can download these notes from <a href="https://github.com/tig12/milewski-youtube-notes">github.com/tig12/milewski-youtube-notes</a>.
- <br>
- <br>The notes are written in english but I use french conventions for capitalization and spaces.
- <br>- The characters <code>; : ? !</code> are preceeded and followed by a white space.</li>
- <br>- Names of months, weekdays, languages etc. are not capitalized.</li>
- </div>
-
- </body>
- </html>
|